145 research outputs found

    Model-Based Development and Evaluation of Control for Complex Multi-Domain Systems: Attitude Control for a Quadrotor UAV

    Get PDF
    A Cyber-Physical System (CPS) incorporates sensing, actuating, computing and communicative capabilities, which are often combined to control the system. The development of CPSs poses a challenge, since the complexity of the physical system dynamics must be taken into account when designing the control application. The physical system dynamics are often defined within mechanical and electrical engineering domains, with the control application residing in software and control engineering domains. Therefore, such a system can be considered multi-domain.With the constant increase in the complexity of such systems, caused by technological advances in all domains, new ways of approaching multi-domain system development are needed. One methodology, which excels in complexity management, is model-based development. Multidomain systems require collaborative modeling, where the physical system dynamics are captured in the Continuous Time (CT) modeling domain and the digital control is captured in the Discrete Event (DE) modeling domain.This thesis demonstrates how an extended CT-first model-based development approach can be applied to a complex multi-domain system. A collaborative model of a quadrotor Unmanned Aerial Vehicle (UAV) has been constructed and used to develop an attitude controller based on Model Predictive Control (MPC). The MPC controller has been compared to an existing open source Proportional Integral Derivative (PID) attitude controller.This thesis contributes to the discipline of model-based development with a methodological extension to the CT-first approach, which extends the conventional approach by expanding the physical modeling process into three consecutive steps. An evaluation of the extension is presented, describing how and when the extended methodology provides increased value

    Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet

    Get PDF
    A new methodology for retrieval of glacier and ice sheet elevations and elevation changes from CryoSat-2 data is presented. Surface elevations and elevation changes determined using this approach show significant improvements over ESA's publicly available CryoSat-2 elevation product (L2 Baseline-B). The results are compared to near-coincident airborne laser altimetry from NASA's Operation IceBridge and seasonal height amplitudes from the Ice, Cloud, and Elevation Satellite (ICESat). Applying this methodology to CryoSat-2 data collected in interferometric synthetic aperture mode (SIN) over the high-relief regions of the Greenland Ice Sheet we find an improvement in the root-mean-square error (RMSE) of 27 and 40 % compared to ESA's L2 product in the derived elevation and elevation changes, respectively. In the interior part of the ice sheet, where CryoSat-2 operates in low-resolution mode (LRM), we find an improvement in the RMSE of 68 and 55 % in the derived elevation and elevation changes, respectively. There is also an 86 % improvement in the magnitude of the seasonal amplitudes when compared to amplitudes derived from ICESat data. These results indicate that the new methodology provides improved tracking of the snow/ice surface with lower sensitivity to changes in near-surface dielectric properties. To demonstrate the utility of the new processing methodology we produce elevations, elevation changes, and total volume changes from CryoSat-2 data for the Greenland Ice Sheet during the period January 2011 to January 2015. We find that the Greenland Ice Sheet decreased in volume at a rate of 289 ± 20 km3a−1, with high interannual variability and spatial heterogeneity in rates of loss. This rate is 65 km3a−1 more negative than rates determined from ESA's L2 product, highlighting the importance of CryoSat-2 processing methodologies.</p

    Mass changes in Arctic ice caps and glaciers: implications of regionalizing elevation changes

    Get PDF
    The mass balance of glaciers and ice caps is sensitive to changing climate conditions. The mass changes derived in this study are determined from elevation changes derived measured by the Ice, Cloud, and land Elevation Satellite (ICESat) for the time period 2003–2009. Four methods, based on interpolation and extrapolation, are used to regionalize these elevation changes to areas without satellite coverage. A constant density assumption is then applied to estimate the mass change by integrating over the entire glaciated region. <br><br> The main purpose of this study is to investigate the sensitivity of the regional mass balance of Arctic ice caps and glaciers to different regionalization schemes. The sensitivity analysis is based on studying the spread of mass changes and their associated errors, and the suitability of the different regionalization techniques is assessed through cross-validation. <br><br> The cross-validation results shows comparable accuracies for all regionalization methods, but the inferred mass change in individual regions, such as Svalbard and Iceland, can vary up to 4 Gt a<sup>−1</sup>, which exceeds the estimated errors by roughly 50% for these regions. This study further finds that this spread in mass balance is connected to the magnitude of the elevation change variability. This indicates that care should be taken when choosing a regionalization method, especially for areas which exhibit large variability in elevation change

    Field experimental design for pesticide leaching – a modified large-scale lysimeter

    Get PDF
    Recent research on Danish groundwater has focused on clarifying the fate and transport of pesticides that leach through clayey till aquitards with low matrix permeability. Previously, these aquitards were considered as protective layers against contamination of underlying groundwater aquifers due to their low permeability characteristics. However, geological heterogeneities such as fractures and macropores have been recognised as preferential flow paths within low permeable clayey till (e.g. Beven &amp; Germann 1982). The flow velocities within these preferential flow paths can be orders of magnitude higher than in the surrounding clay matrix and pose a major risk of transport of contaminants to the underlying aquifers (e.g. Nilsson et al. 2001). Previous studies of transport in fractured clayey till have focused on fully saturated conditions (e.g. Sidle et al. 1998; McKay et al. 1999). However, seasonal fluctuations of the groundwater table typically result in unsaturated conditions in the upper few metres of the clay deposits, resulting in different flow and transport conditions. Only a few experiments have examined the influence of unsaturated conditions on flow and solute (the dissolved inorganic and organic constituents) transport in fractured clayey till. These include small-scale laboratory column experiments on undisturbed soil monoliths (e.g. Jacobsen et al. 1997; Jørgensen et al. 1998), intermediate scale lysimeters (e.g. Fomsgaard et al. 2003) and field-scale tile drain experiments (e.g. Kjær et al. 2005). The different approaches each have limitations in terms of characterising flow and transport in fractured media. Laboratory studies of solute transport in soils (intact soil columns) are not exactly representative of field conditions due to variations in spatial variability and soil structure. In contrast, field studies hardly allow quantification of fluxes and mechanisms of transport. Column and lysimeter experiments are often limited in size, and tile-drain experiments on field scale do not provide spatial resolution and often have large uncertainties in mass balance calculations. Thus, in order to represent the overall natural fracture network systems on a field scale with respect to acquiring insights into flow and transport processes, the lysimeter needs to be larger than normal lysimeter size (&lt; 1 m3). A modified large-scale lysimeter was therefore constructed by the Geological Survey of Denmark and Greenland (GEUS) at the Avedøre experimental field site 15 km south of Copenhagen (Fig. 1). This lysimeter consisted of an isolated block (3.5 ×3.5 ×3.3 m) of unsaturated fractured clayey till with a volume sufficient to represent the overall preferential flow paths (natural fracture network) within lowpermeable clayey till at a field scale

    Standardization for Defence Procurement - European Handbook : CEN Workshop 10

    Get PDF
    The European Commission (EC), DG Enterprise, endeavours the competitiveness of the European Defence Industry. The plethora of (national) standards, more than 10.000, are recognised by the EC as a major constraint and cost driver. Electromagnetic Compatibility (EMC) or Electromagnetic Environmental Effects (EEE) are considered by the EC as a major topic, with 7 other topics such as environmental engineering, energetic materials, batteries, electrical interfaces. An EMC expert group with representatives from industry, including Aerotech Telub, Intellect, EADS, Ericsson Microwave, Fincantieri, MBDA, Thales, and national MoDs rationalized in 2004 a list of 329 EEE standards, implicitly abandoning national, including American, standards, and develop guidelines for the procurement process. A limited number of widely accepted and cost effective standards, suitable for use by MoD’s (acquisition) and industry (product development), has been defined after making comparisons. Comparisons were carried out on some standards against STANAG 4370 AECTP 500. The Expert Group agreed; That no one standard is better or worse than another in achieving an end goal. Differences are not sufficient to prevent the use of AECTP 500. There are sufficient similarities to AECTP 500 to adopt this as the fundamental replacement standard. There was sufficient agreement on NATO-, IEC- and EN-produced standards to make worthwhile agreement to use a number of standards as replacement for some (or some parts) of existing National Standards. This document gives recommendations on the use of the standards, the scope and \ud limitations. It also emphasizes the constraints with respect to the standardisation process of National MoD’s, NATO, Industry and EN/IEC

    Non-Random mtDNA Segregation Patterns Indicate a Metastable Heteroplasmic Segregation Unit in m.3243A>G Cybrid Cells

    Get PDF
    Many pathogenic mitochondrial DNA mutations are heteroplasmic, with a mixture of mutated and wild-type mtDNA present within individual cells. The severity and extent of the clinical phenotype is largely due to the distribution of mutated molecules between cells in different tissues, but mechanisms underpinning segregation are not fully understood. To facilitate mtDNA segregation studies we developed assays that measure m.3243A>G point mutation loads directly in hundreds of individual cells to determine the mechanisms of segregation over time. In the first study of this size, we observed a number of discrete shifts in cellular heteroplasmy between periods of stable heteroplasmy. The observed patterns could not be parsimoniously explained by random mitotic drift of individual mtDNAs. Instead, a genetically metastable, heteroplasmic mtDNA segregation unit provides the likely explanation, where stable heteroplasmy is maintained through the faithful replication of segregating units with a fixed wild-type/m.3243A>G mutant ratio, and shifts occur through the temporary disruption and re-organization of the segregation units. While the nature of the physical equivalent of the segregation unit remains uncertain, the factors regulating its organization are of major importance for the pathogenesis of mtDNA diseases

    Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus

    Get PDF
    Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya
    corecore